Example of using the limit definition of the derivative to find its formula



f(x) = -2x2-3x-5

1)   f(x+h)= -2(x+h)2-3(x+h)-5          (just replace x by x+h where you see an x)

= -2(x2+2hx+h2) -3(x+h)-5           (square the x+h)

= -2x2-4hx-2h2-3x-3h-5           (eliminate the parentheses) 

2)   f(x+h)-f(x)= -2x2-4hx-2h2-3x-3h-5-(-2x2-3x-5)  (subtract the f(x) expression)              

= -2x2-4hx-2h2-3x-3h-5+2x2+3x+5       (eliminate the parentheses)                  

=  -4hx-2h2-3h     (simplify…all terms should contain a least one factor of h) 

3)  [f(x+h)-f(x)]/h =-4x-2h-3              (divide each term by h)

4)  lim  [f(x+h)-f(x)]/h
     h->0                     = -4x-3           (sub in 0 for h…all terms with h will disappear)         

this is f '(x)=-4x-3                (this is your answer)


Not all derivatives are this easy. Some require quite a bit of algebra before the division in step 3